

Based on work done in collaboration with Keith Dienes

[arXiv:1106.4546, arXiv:1107.0721, arXiv:1110.xxxx]

A New Framework for Dark Matter Physics

- The dominant paradigm in dark-matter phenomenology has been to consider scenarios in which $\Omega_{\rm DM}$ is made up by one stable particle (or maybe two or three), but maybe nature isn't quite so simple.
- It could be that many particles maybe even a <u>vast</u> number contribute nontrivially to that abundance, with each providing only a minute fraction of the total.

$$\Omega_{\mathrm{DM}} = \sum_{i} \Omega_{i}$$

 Some of these states may be only quasi-stable, but as long as the individual abundances are <u>balanced</u> <u>against decay rates</u> in just the right way, this can be a viable dark-matter scenario!

"Dynamical Dark Matter"

Dynamical Dark Matter: The Big Picture

Over the course of this talk, I'll demonstrate how such scenarios arise **naturally** in the context of large extra dimensions.

Moreover, I'll provide a concrete example of a viable model of dynamical dark matter, in which all applicable constraints are satisfied, and a large number of states contribute significantly toward Ω_{DM} .

This example demonstrates that dynamical dark matter is a viable framework for addressing the dark-matter question.

(General) Axions in Large Extra Dimensions

- Consider a 5D theory with the extra dimension compactified on S_1/Z_2 with radius $R = 1/M_c$.
- Global U(1)_x symmetry broken at scale f_x by a bulk scalar → bulk axion is PNGB.
- SM and an additional gauge group G are restricted to the brane. G confines at a scale Λ_{G} . Instanton effects lead to a **brane-mass** term m_x for the axion.

Axion mass matrix: $\begin{pmatrix} m_X^2 & \sqrt{2}m_X^2 & \sqrt{2}m_X^2 & \dots \\ \sqrt{2}m_X^2 & 2m_X^2 + \frac{M_c^2}{M_c^2} & 2m_X^2 & \dots \\ \sqrt{2}m_X^2 & 2m_X^2 & 2m_X^2 + \frac{4M_c^2}{M_c^2} & \dots \end{pmatrix}$

When $y \equiv M_c/m_X$ is small, substantial mixing occurs:

Mass eigenstates $(\widetilde{\lambda} \equiv \lambda/m_X)$

"Mixing Factor"

$$a_{\lambda} = \sum_{n=0}^{\infty} U_{\lambda n} a_{n} \equiv \sum_{n=0}^{\infty} \left(\frac{r_{n} \widetilde{\lambda}^{2}}{\widetilde{\lambda}^{2} - n^{2} y^{2}} \right) A_{\lambda} a_{n}$$

$$A_{\lambda} = \frac{\sqrt{2}}{\widetilde{\lambda}} \left[1 + \widetilde{\lambda}^{2} + \pi^{2} / y^{2} \right]^{-1/2}$$

$$A_{\lambda} = \frac{\sqrt{2}}{\widetilde{\lambda}} \left[1 + \widetilde{\lambda}^2 + \pi^2 / y^2 \right]^{-1/2}$$

The Three Fundamental Questions:

"Does the relic abundance come out right?"

$$\Omega_{\rm tot} \equiv \sum_{\lambda} \Omega_{\lambda}$$

$$\Omega_{\mathrm{tot}} \equiv \sum_{\lambda} \Omega_{\lambda}$$
 must match $\Omega_{\mathrm{DM}}^{\mathrm{WMAP}} h^2 = 0.1131 \pm 0.0034$ [Komatsu et al.; '09]

"Do a large number of modes contribute to that abundance, or does the lightest one make up essentially all of Ω_{DM} ?"

Define:
$$\eta \equiv 1 - \frac{\Omega_{\lambda_0}}{\Omega_{\rm tot}}$$
 "Tower Fraction"

If η is $\mathcal{O}(1)$, the full tower contributes nontrivially to Ω_{DM} .

"Is the model consistent with all of the applicable experimental, astrophysical, and cosmological constraints?"

Thanks to the properties of the mixing factor A_{λ} , the answer to all three questions can indeed (simultaneously) be in the affirmative!

Mixing and Relic Abundances:

- At temperatures $T \gg \Lambda_G$, $m_X \approx 0$. At such temperatures, mixing is negligible, and the potential for a_0 effectively vanishes.
- The expectation value of a_0 at such temperatures is therefore undetermined:

 $\langle a_0 \rangle_{\mathrm{init}} = \theta f_X$ "Misalignment Angle"
(parameterizes initial displacement)

- However, at $T \sim \Lambda_G$, instanton effects turn on:
 - m_x becomes nonzero, so KK eigenstates are no longer mass eigenstates.
 - The zero-mode potential now has a well-defined minimum.

• The a_{λ} are initially populated (at t_G) according to their overlap with a_0 :

- Each field begins to oscillate at a time t_{λ} , when two conditions are met:
 - 1. ρ_{λ} is nonzero (so $t \gtrsim t_G$).
 - 2.) Mass has become comparable to Hubble Parameter: $\lambda \sim 3H(t)$.
- In the approximation that the instanton potential turns on rapidly, we have two regimes:

The Contribution from Each Field

Time-evolution factor (for t_{λ} during reheating)

Mixing factor from A_{λ}^2 Decay suppression

E Pluribus Unum: Ω_{tot} from Ω_{λ}

The total relic abundance at present time is obtained by summing over these individual contributions.

The upshot: $\Omega_{\rm DM}$ consistent with WMAP results for $\hat{f}_X \sim 10^{14} - 10^{15}$ GeV.

Tower Fractions

- When Λ_G is small and t_G occursvery late, all modes begin oscillating simultaneously at t_G and contribute "democratically" to $\Omega_{\rm DM}$.
- When Λ_G is large and t_G occurs early, t_{λ} for the relevant modes are staggered in time. Lighter modes contribute proportionally more to $\Omega_{\rm DM}$.

Mixing and stability:

- Couplings between SM fields and the a_{λ} are propottional to $\tilde{\lambda}^2 A_{\lambda}$.
- ullet This results in a decay-width suppression for modes with $\lambda \lesssim m_X^2/M_c$

• Comparing to the relic-abundance results, above we find that the a_{λ} with large Γ_{λ} automatically have suppressed Ω_{λ} !

This balance between Ω_{λ} and Γ_{λ} rates relaxes constraints related to:

- Distortions to the CMB
- Features in the diffuse X-ray and gamma-ray background
- Disruptions of BBN
- Late entropy production

Mixing and axion production:

Without mixing:

(e.g. KK-graviton production)

$$\sigma_{\rm prod} \propto \frac{1}{M_P^2} \left(\frac{E}{M_c}\right)$$

With mixing:

$$\sigma_{\mathrm{prod}} \propto \frac{1}{\hat{f}_X^2} \aleph^2(E)$$

where

$$\sigma_{\text{prod}} \propto \frac{1}{\hat{f}_X^2} \aleph^2(E)$$
 $\aleph^2(E) \equiv \sum_{\lambda}^E (\tilde{\lambda}^2 A_{\lambda})^2$

Suppression significantly relaxes limits from processes in which axions are produced, but not detected directly, including those from:

- Supernova energy-loss rates
- Stellar evolution
- Collider production (j+E_T, γ+E_T,...)

Decoherence phenomena (also related to axion mixing) suppress detection rates from: [Dienes, Dudas, Gherghetta; '99]

- Microwave-cavity experiments
- Helioscopes
- "Light-shining-through-walls" (LSW) experiments, etc.

Constraints on Dark Towers

• Therefore, while a great many considerations constrain scenarios involving light bulk axions, they can all be simultaneously satisfied.

Summary

- There's no reason to assume that a single, stable particle accounts for all of the non-baryonic dark matter in our universe.
- Indeed, there are simple, well-motivated BSM scenarios in which a large number of particles contribute non-trivially toward $\Omega_{\rm DM}$
- Production mechanisms (e.g. misalignment production) exist which naturally generate relic abundances for the contributing fields in such a way that an inverse correlation exists between Ω_{λ} . and Γ_{λ} .
- The same mass-mixing which gives rise to this correlation automatically suppresses the interactions between the lighter modes and the SM fields, making these particles less dangerous from a phenomenological perspective.

The Take-Home Message:

Dynamical dark matter is as viable a framework in which to address the dark matter question as any other.